
Abstract. SeqFold is a fold recognition program based
on sequence-similarity detection aided by predicted
secondary structure [1±3]. Critical validation and eval-
uation of SeqFold fold recognition performance based
on the latest Critical Assessment of protein Structure
Prediction (CASP2) targets has been performed. It has
revealed that four out of seven CASP2 threading targets
were assigned a correct fold using this method. SeqFold
has also been applied to the problem of fold recognition
for leptin. Mice with a defective leptin gene are extremely
obese and diabetic. Leptin does not exhibit clear
sequence homology to any protein with known struc-
ture. SeqFold predicts that leptin belongs to the class of
short-chain four-helical cytokines. The structure of
leptin, which has recently been solved by X-ray crystal-
lography, reveals that leptin is a long-chain four-helical
cytokine. The 3D model of leptin demonstrates that
SeqFold alignment-based homology modeling captures
essential features of the leptin structure.
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1 Introduction

Recent advances in whole genome scale sequencing
deliver new putative protein sequences at enormous
speed. Complete new genomes of small microorganisms
are now being published almost every month and
mammalian genomes are expected at the break of the
new millennium. This wealth of information o�ers
researchers an opportunity to describe, model, and
possibly understand whole living organisms (see, for
example, Ref. [4]). However, we are rapidly approaching

the limit of information that may be drawn from
sequence data. This limit stems from the fact that only
a relatively small number of sequences can be con®-
dently annotated with the predicted function and/or
structure. The most optimistic estimates conclude that
about 50±60% of all sequences in a novel genome may
be annotated based on similarity to previously charac-
terized sequences [5]; however, more con®dent structural
annotation can be expected for only about 20% of
sequences.

Homologous sequences (i.e., sequences that share a
common ancestor) are likely to preserve overall structure
and function, regardless of their residue-by-residue
similarity. At the level of 30% or less a number of se-
quences appear to be homologous, but amino acid
similarity is only super®cial. When two sequences are
optimally aligned the range of 20±30% amino acid
identity, which, used as a measure of homology of the
two sequences, is customarily called the twilight zone [6].
Unfortunately, a large majority of homologous se-
quences exhibit less than 25% amino acid identity [3],
even though functional or structural similarity is pre-
served. Hence, the limit of information derived from
sequence-based annotation is quickly exhausted. Be-
cause of the overwhelming number of new sequences it is
vital that annotation methods should be automated, so
that the structure/function recognition process is rela-
tively e�ortless.

A protein structure is determined by its amino acid
sequence alone [7]. Fortunately, the number of possible
protein structures (folds) is predicted to be far less that
the number of sequences [8]. It might therefore be pos-
sible to test how well a novel sequence folds into an
already known protein structure. The subclass of se-
quence-structure space searching algorithms that at-
tempts to solve such a question is known as a threading
algorithm. Speci®cally, algorithms that perform a search
for a given novel sequence and return the most com-
patible structure are called fold recognition algorithms
[9]. There are a number of threading algorithms that
di�er by the sequence-structure scoring function and by
the alignment algorithm used to optimize an alignment
for a speci®c scoring function [10±11].
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So far, one of the most successful attempts to solve
the fold recognition problem is to explore the twilight
zone of protein similarity by enhancing sequence-based
similarity scores with the predicted secondary structure
of the sequence under study [1±3]. In this paper we study
the performance of SeqFold, our implementation of
such a method using fold recognition targets from the
second edition of the critical assessment of protein
structure prediction (CASP2) experiment [12]. Also, we
test the dependence of fold recognition prediction results
on the accuracy of the secondary structure prediction
and we demonstrate the application of SeqFold as the
alignment provider for homology model construction
using yet another example ± the human hormone, leptin.

Two editions of the CASP2 experiment have already
been summarized at meetings in Asilomar in 1994 and
1996. There are four categories of predictions, namely:
homology modeling, threading, ab initio folding, and
docking. To establish a common basis for comparison of
the various techniques all participating predictors do not
know the structures of their targets beforehand, which
makes it a true blind prediction contest. For the purpose
of validation, in this paper we have used seven targets
from the threading category of CASP2. Obviously, this
does not represent a blind prediction; CASP2 targets are
used purely as a representative, independent test set for
the validation of our tool.

As an independent example of SeqFold fold recogni-
tion performance, SeqFold has been tested on the human
form of the leptin hormone. Leptin is a product of the
obese (OB) gene. OB gene defects in rodents lead to ex-
treme obesity, hypherphagia, diabetes, and infertility. In
humans, OB gene defects are linked to early-onset obesity
and inhibited sexual development (see, for example,
Ref. [13]). Sequence-similarity methods fail to indicate
any links between the leptin family and any other se-
quence. The recent structure solution byX-ray [14] reveals
that it possesses a four-helix structure which corresponds
to the family of long-chain cytokines. Hence, it is a perfect
target for testing the fold recognition method.

2 Theory

Sequence-similarity score between target (query) se-
quence and the reference structure is computed in
SeqFold using sequence-similarity matrices such as
Gonnet [15] or Blosum62 [16]. These matrices represent
the relative, observed chances of mutation of amino acid
i to amino acid j with respect to the estimated random
chance of such mutation, i.e.,

sij � log
observedij

expectedij

In the twilight zone, sequence-similarity searches are not
always selective enough to distinguish between a true
homologue of the target sequence and a number of false
positive hits. It has been demonstrated that inclusion of
the predicted secondary structure in the scoring function
increases the odds of identi®cation of a correct homo-
logue missed by the sequence-only method [1].
The source of the improvement is mainly through the

increased selectivity of the scoring function [17]. The
modi®ed sequence-structure similarity score for the
target amino acid i and the reference structure position
j has the following form:

stij � wseq � sij � wstr � ci � tij;

where sij and tij are sequence- and structure-similarity
matrices, respectively. sij is de®ned as above and tij
equals 1 if the secondary structure at position i is a helix
or a strand and equals to the secondary structure at
position j. Otherwise tij equals 0. ci values range from 0
to 1 and represent con®dence in the secondary structure
prediction of the ith position of the target sequence, and
depend on the secondary-structure prediction algorithm.
In the case of Chou-Fasman, GOR, and DSC predic-
tions, ci is equal to the probability of the most likely
secondary structure at position i. In the case of PHD, the
prediction reliability index has been used. wseq and wstr

are relative weights of sequence and structure contribu-
tion to the total score. Default values for wseq and wstr

are 1.0 and 0.6, respectively, in all our calculations.
Alignment of the annotated target sequence with ev-

ery structure from the reference fold library is performed
using the global-local algorithm. The global-local algo-
rithm introduces an additional gap penalty for the ter-
minal gaps in addition to the standard opening and
extension penalties. Gaps in the target sequence are
treated separately from gaps in the reference structure.
In particular, only terminal gaps in the reference struc-
ture are penalized and the alignment is local in the target
sequence. This has the e�ect of squeezing a target se-
quence onto the whole length of the reference structure.
It has been shown that global-local alignment increases
fold recognition odds even without using predicted sec-
ondary structure annotations [1].

3 Results

Sequences of seven CASP2 targets that correspond to
the folds from the SeqFold database have been retrieved
from the CASP2 homepage [18]. These sequences have
no clear sequence homology to the structures in our
database of protein folds. For the purpose of compar-
ison, we used the PHD secondary structure prediction
server [19]. The results of the secondary structure
prediction were passed to the SeqFold program using
the InsightII interface [20]. The default parameter set
was used with no attempt to change or optimize
parameters. As can be seen from the cumulative results
presented in Table 1, four out of seven targets have been
correctly assigned to the corresponding structure. Three
targets were relatively easy to identify [21]. The S1 motif
of PNPase (T4) exhibits a sequence similarity of almost
30% to 1mjc (when a gapless alignment is used) and the
homology model based on the SeqFold alignment
exhibits a 4.6 AÊ RMS deviation from the experimental
structure for all alpha carbons (see Fig. 1). Exfoliative
toxin A exhibits a 26% identity to the trypsin-like serine
protease (1elc). The homology model based on the
SeqFold alignment has a sharp decrease in quality
following residue 180 of the target (see Fig. 2). The ®rst
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part of the model deviates around 4.8 AÊ from the
experimental structure, whereas the remainder is almost
random. 3-Dehydroquinase (target 14) is also an easy
target that SeqFold recognizes as a TIM barrel fold
(1wsy_A) from the family of tryptophan biosynthesis
enzymes. The experimental structure of that target has
not yet been published so assessment of the homology
model is not possible. The cellulose binding domain
(target 38) is a relatively di�cult target [21]. The
percentage of identical residues with the best hit (1 xyn)
is only 20%. That prediction is nevertheless suggestive,
since there is an independent high-scoring member of the
same family of folds (1scs) present in the hit list.
Ferrochelatase (T20) is another di�cult target with a
strong false positive that prevents identi®cation of the
correct corresponding hits of 1sbp and 2gbp ± these are
periplasmic binding-like folds. The second domains of
threonine deaminase and L-fucose isomerase are very
di�cult targets and sequences with the correct corre-

sponding folds are not observed in the ®rst ten hits. All
other CASP2 threading targets correspond to folds that
are not present in our fold library ± they were also
identi®ed as novel folds by CASP2 jurors. We did not
attempt to test the null hypothesis for these remaining
CASP2 targets.

The mouse leptin sequence has been used to test the
dependence of SeqFold results on the secondary struc-
ture prediction quality. The leptin sequence does not
exhibit clear homology to any protein in our database,
i.e, the sequence search with wstr � 0 failed to identify
any sequence match. Four secondary structure predic-
tion methods have been tested, namely: Chou-Fasman,
GOR II, DSC [22], and PHD [23]. In the case of the
GOR II and Chou-Fasman methods the SeqFold results
are inconclusive and it is not possible to identify a cor-
rect fold. The quality of the helix prediction by these
methods is very low ± 31% and 36%, respectively. In the
case of the PHD prediction, granulocyte-macrophage
colony stimulating factor GM-CSF (1gmf_A) stands out
as a fold (four helical cytokine-like) prediction and the
result is substantiated by other high-scoring members of
the same superfamily, namely granulocyte colony stim-
ulating factor G-CSF (1bgc) and interleukin-4 (1rcb).
Similar results has been obtained by Madej et al. [24].
The leptin structure has recently been solved experi-
mentally and shown to belong to the superfamily of
long-chain four-helical cytokines [14]. Hence, although
the overall fold has been correctly assigned, the GM-
CSF superfamily is slightly di�erent. The result achieved
using PHD is probably due to the high quality of helix
state predictions ± 74% with no false positives. Using
DSC made the prediction less apparent. Results were not
clear; however, GM-CSF did rank second and a strong
false positive ± Mengo virus coat protein (2mve) was
ruled out due to the very short coverage of the reference
structure by the alignment. This result is surprising since
the overall helix prediction accuracy is only 24%, the
®rst two helices are completely missed, and only helix C
and part of helix D are correctly rendered. A possible
explanation for this e�ect is that the standard Q3 mea-
sure of the secondary structure prediction quality is
inadequate in the context of sequence-structure com-
patibility score. Secondary structure information is
critical for maintaining a correct path in the regions
where sequence similarity is ambiguous, but is not es-
sential in regions where sequence similarity is high.

Table 1. SeqFold results for CASP2 threading targets

CASP2 target Protein description Closest fold
(CASP2 jurors)

SeqFold
rank 1 hit

Comments

T02 Threonine Deaminase 1psd_A 1gp1_A False positive ± di�cult domain only part ± second
domain is homologous to tryptophan synthase

T04 S1 motif of PNPase 1csp 1mjc Same family
T14 3-dehydroquinase 1nal_1 1wsy_A Same fold
T20 Ferrochelatase 8abp 1ipd False positive, closest true positive ranks as 4
T22 L-fucose isomerase 1tca 1trk_A False positive ± no true positive in ®rst 10 hits ± di�cult

target
T31 Exfoliative toxin 3est 1elc Same family
T38 Cellulose binding

domain CBND1
1byh 1xyn Same fold

Fig. 1. Comparison of the experimental structure (blue) and the
prediction based model (red) of the S1 motif of polyribonucleotide
nucleotidyltransferase
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Alignments based on PHD and DSC predictions do
not di�er; thus, homology models of mouse leptin would
have been the same. The X-ray structure of leptin has
not yet been published; therefore only qualitative as-
sessment of the model is possible. All four helices that
form the fold are present in the model, however, one
additional helix is inherited from the template and the
E helix from the X-ray structure is missing from the
model. The lengths of the helices in the template and in
the structure are reported in Table 2. Note that model
helices A and D have pronounced kinks as expected
from the structure. The positions of the invariant resi-
dues observed in the leptin family in each helix are also
reported in Table 2. There are ®ve clusters of highly
conserved sequence segments located in helices A, B, C,
D and in the loop between the A and B helices. With the
exception of the last segment that is shifted towards the
N terminus of the D helix, all others are correctly po-
sitioned. Disul®de bond-forming Cys96 and Cys146 are
close in the model and the only buried aromatic side
chain in the leptin structure, Tyr61, is also buried in the
model, even though the Tyr61 environment is not cor-
rectly reproduced (see Fig. 3).

4 Conclusions

Application of the SeqFold algorithm to leptin and
seven CASP2 targets has demonstrated that the use of
predicted secondary structure annotations substantially

Fig. 2. Comparison of the ex-
perimental (red) and model (blue)
structures of exfoliative toxin A.
Orange and light blue correspond
to the low-quality model and the
cyan colored structure indicates
the region which lacks a template

Table 2. Obese gene mouse model evaluation statistics. Names of
helices are according to Ref. [14]. Helix length column report length
of model helix and length of the helix in the X-ray structure.
Conserved helical residues report number of residues conserved in
the leptin family that are predicted to be in the helix

Helix Helix
length

Missing N
terminal
residues

Missing C
terminal
residues

Conserved
helical
residues

A 16/23 5 2 8/8
B 10/17 3 4 6/6
C 9/24 10 5 8/10
D 14/23 5 4 6/11
E 10 N/A N/A N/A

Fig. 3. The mouse leptin model displays a four helix bundle
architecture with a correctly positioned Tyr61. The Cys96-Cys146
pair is also correctly reproduced by the model
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increases the odds of identifying a homologous se-
quence for these molecules. However, the performance
of the fold recognition algorithm is substantially
a�ected by the quality of the secondary structure
prediction algorithm. This can be seen by comparing
the performance of SeqFold using the di�erent predic-
tions from Chou-Fasman, GOR II, DSC, and PHD for
the leptin search.

When examining the homology models that have
been constructed using a PDB template of the correctly
recognized fold it has been observed that, whilst the
overall quality of the model may not be high, the models
generally preserve the main features of the experimental
structures. In the case of the leptin model this means
that the majority of the functionally important residues
were arranged in a similar 3D orientation as that
observed in the X-ray crystal structure. This has impli-
cations in the area of functional genomics, where rec-
ognition of a molecule's fold alone may not indicate
function (e.g., many proteins possess a TIM barrel fold
but have di�erent functions). However, in many cases, a
low-resolution homology model with the functionally
important residues in the correct orientation would be
enough to give some clues about a protein's function;
this could then be veri®ed by targeted mutagenesis
experiments.
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